Cody Ritt
 

Featured Publications

Jump to total publication list

 
 

machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores

C.L. Ritt, M. Liu, T.A. Pham, R. Epsztein, H.J. Kulik, M. Elimelech, Science Advances, 8, eabl5771 (2022)

 

abstract

Designing single-species selective membranes for high-precision separations requires a fundamental understanding of the molecular interactions governing solute transport. Here, we comprehensively assess molecular-level features that influence the separation of 18 different anions by nanoporous cellulose acetate membranes. Our analysis identifies the limitations of bulk solvation characteristics to explain ion transport, highlighted by the poor correlation between hydration energy and the measured permselectivity (R^2 = 0.37). Entropy-enthalpy compensation, spanning 40 kilojoules per mole, leads to a free-energy barrier (∆G‡) variation of only ~8 kilojoules per mole across all anions. We apply machine learning to elucidate descriptors for energetic barriers from a set of 126 collected features. Notably, electrostatic features account for 75% of the overall features used to describe ∆G‡, despite the relatively uncharged state of cellulose acetate. Our work presents an approach for studying ion transport across nanoporous membranes that could enable the design of ion-selective membranes.

Check out our Twitter highlight on the work for a detailed synopsis!


ionization behavior of nanoporous polyamide membranes

C.L. Ritt, J.R. Werber, M. Wang, Z. Yang, Y. Zhao, H.J. Kulik, M. Elimelech, Proceedings of the National Academy of Science, 117, 30191–30200 (2020)

Abstract

Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure–property–performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water–salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.

Check out our Twitter highlight or the Yale News release on the work for detailed synopses!

 

a molecularly impermeable polymer from two-dimensional polyaramids

C.L. Ritt, M. Quien, Z. Wei, H. Gress, M.T. Dronadula, K. Altmisdort, Y.-M. Tu, M. Gadaloff, N.R. Aluru, K.L. Ekinci, J.S. Bunch, M.S. Strano, (Submitted to Sciencehttps://doi.org/10.26434/chemrxiv-2024-c8b17-v2)

Abstract

All polymers exhibit gas permeability through the free volume of entangled polymer chains.  However, two-dimensional (2D) materials including graphene stack densely and can exhibit molecular impermeability. Solution-synthesized 2D polymers that exhibit the latter by poly-condensation have been a longstanding goal.  Herein, we demonstrate self-supporting, spin-coated 2D polyaramid nanofilms that exhibit N2 permeability below 3.1E-9 Barrer, 6500-fold lower than existing polymers, and similar for other gases. Optical interference during the pressurization of nanofilm-coated microwells allows measurement of mechanosensitive rim opening and sealing, creating gas-filled bulges stable exceeding 3 years. This discovery enables 2D polymer resonators with high resonance frequencies (~8 MHz) and Q factors up to 537, similar to graphene. A 60-nm coating of air-sensitive perovskites reduces the lattice degradation rate 14-fold with an O2 permeability of 3.3E-8 Barrer. Molecularly impermeable polymers promise the next generation of barriers that maximize chemical rejection with minimal material, ultimately advancing sustainability goals.

 

updated 10/01/24

Publication List

First-author: 9 — corresponding: 1 — total: 24h-index: 17

‡equal contribution

*CORRESPONDING AUTHOR

 

1.

D.J. Lundberg, J. Kim, Y-.M. Tu, C.L. Ritt, M.S. Strano, “Concerted methane fixation at ambient temperature and pressure mediated by an enzymatic and Fe-ZSM-5 catalytic couple,” Nat. Catalysis (accepted).


 

2.

Y-.M. Tu‡, M. Kuehne‡, R.P. Misra, C.L. Ritt, et. al., “Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes,” Nat. Commun. 5605 (2024). DOI: 10.1038/s41467-024-49661-8


 

3.

L.F. Villalobos, K.E. Pataroque, W. Pan, T. Cao, M. Kaneda, C. Violet, C.L. Ritt, M. Elimelech, “Orientation matters: Measuring the correct surface of polyamide membranes with quartz crystal microbalance,” J. Membr. Sci. Lett. 100048 (2023). DOI: 10.1016/j.memlet.2023.100048


 

4.

M.G. Barsukov‡, C.L. Ritt‡*, I.V. Barsukov, E.M. Syth, M. Elimelech, “Influence of graphite geography on the yield of mechanically exfoliated few-layer graphene,” (2023). DOI: 10.1016/j.carbon.2023.03.068


 

5.

N.R. Aluru, F. Aydin, M.Z. Bazant, D. Blankschtein, A.H. Brozena, J.P. de Souza, et al., “Fluids and electrolytes under confinement in single-digit nanopores,” Chem. Rev. 123, 2737-2831 (2023). DOI: 10.1021/acs.chemrev.2c00155


 

6.

C.L. Ritt, J.P. de Souz, M.G. Barsukov, S. Yosinski, M.Z. Bazant, M.A. Reed, M. Elimelech, “Thermodynamics of charge regulation during ion transport through silica nanochannels,” ACS Nano 16, 15249-15260 (2022). DOI: 10.1021/acsnano.2c06633

 

 

7.

M. Heiranian, R.M. DuChanois, C.L. Ritt, C.A. Violet, M. Elimelech, “Molecular simulations of transport phenomena in polymeric membranes: Implications for membrane design,” Environ. Sci. Technol. 56, 3313-3323 (2022). DOI: 10.1021/acs.est.2c00440

 

 

8.

C.L. Ritt‡, M. Nami‡, M. Elimelech, “Laser interferometry for precise measurement of ultralow flow rates from permeable materials,” Environ. Sci. Technol. Lett. 9, 233-238 (2022). DOI: 10.1021/acs.estlett.2c00026

 

 

9.

C.L. Ritt, M. Liu, T.A. Pham, R. Epsztein, H.J. Kulik, M. Elimelech, “Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores,” Sci. Adv. 8, 2, eabl5771 (2022). DOI: 10.1126/sciadv.abl5771

 

 

10.

C.L. Ritt‡, T. Stassin‡, D.M. Davenport, R.M. DuChanois, I. Nulens, Z. Yang, N. Segev-Mark, A. Ben-Zvi, M. Elimelech, C.Y. Tang, G.Z. Ramon, I.F.J. Vankelecom, R. Verbeke, “The Open Membrane Database: Synthesis–structure–performance relationships of reverse osmosis membranes,” J. Membr. Sci. 641, 119927 (2022). DOI: 10.1016/j.memsci.2021.119927

 

 

11.

C. Lu, C. Hu, C.L. Ritt, X. Hua, J. Sun, H. Xia, Y. Liu, D. Li, B. Ma, M. Elimelech, J. Qu, “In situ characterization of dehydration during ion transport in polymeric nanochannels,” J. Am. Chem. Soc. 143, 14242-14252 (2021). DOI: 10.1021/jacs.1c05765

 

 

12.

R. Verbeke, D.M. Davenport, T. Stassin, S. Eyley, M. Dickmann, J. Alexander, P. Dara, C.L. Ritt, C. Bogaerts, W. Egger, R. Ameloot, J. Meersschaut, W. Thielemans, G. Koeckelberghs, M. Elimelech, I.F.J. Vankelecom, “Chlorine-resistant epoxide-based membranes for sustainable water desalination,” Environ. Sci. Technol. Lett. 8, 818-824 (2021). DOI: 10.1021/acs.estlett.1c00515

 

 

13.

W.-H. Zhang, M.-J. Yin, Q. Zhao, C.-G. Jin, N. Wang, S. Ji, C.L. Ritt, M. Elimelech, Q.-F. An, “Graphene oxide membranes with stable porous structure for ultrafast water transport,” Nat. Nanotechnol. 16, 337-343 (2021). DOI: 10.1038/s41565-020-00833-9

 

 

14.

C.L. Ritt, J.R. Werber, M. Wang, Z. Yang, Y. Zhao, H.J. Kulik, M. Elimelech, “Ionization behavior of nanoporous polyamide membranes,” Proc. Natl. Acad. Sci. U.S.A. 117, 30191- 30200 (2020). DOI: 10.1073/pnas.2008421117

 

 

15.

D.M. Davenport, C.L. Ritt, R. Verbeke, I.F.J. Vankelecom, M. Elimelech, “Thin film composite membrane compaction in high-pressure reverse osmosis,” J. Membr. Sci. 610, 118268 (2020). DOI: 10.1016/j.memsci.2020.118268

 

 

16.

X. Lu, U.R. Gabinet, C.L. Ritt, X. Feng, A. Deshmukh, K. Kawabata, M. Kaneda, S.M. Hashmi, C.O. Osuji, M. Elimelech, “Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior,” Environ. Sci. Technol. 54, 9640-9651 (2020). DOI: 10.1021/acs.est.0c02364

 

 

17.

R. Epsztein, R.M. DuChanois, C.L. Ritt, A. Noy, M. Elimelech, “Towards single-species selectivity of membranes with subnanometre pores,” Nat. Nanotechnol. 15, 426-436 (2020). DOI: 10.1038/s41565-020-0713-6

 

 

18.

C.J. Porter, J.R. Werber, C.L. Ritt, Y.F. Guan, M. Zhong, M. Elimelech, “Controlled grafting of polymer brush layers from porous cellulosic membranes,” J. Membr. Sci. 596, 117719 (2020). DOI: 10.1016/j.memsci.2019.117719

 

 

19.

S.K. Patel‡, C.L. Ritt‡, A. Deshmukh, Z. Wang, M. Qin, R. Epsztein, M. Elimelech, “The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies,” Energy Environ. Sci. 13, 1694-1710 (2020). DOI: 10.1039/D0EE00341G

 

 

20.

F. Aydin, C. Zhan, C.L. Ritt, R. Epsztein, M. Elimelech, E. Schwegler, T.A. Pham, “Similarities and differences between potassium and ammonium ions in liquid water: A first-principles study,” Phys. Chem. Chem. Phys. 22, 240-2548 (2020). DOI: 10.1039/C9CP06163K

 

 

21.

C.L. Ritt‡, J.R. Werber‡, A. Deshmukh, M. Elimelech, “Monte Carlo simulations of framework defects in layered two-dimensional desalination membranes: Implications for permeability and selectivity,” Environ. Sci. Technol. 53, 6214-6224 (2019). DOI: 10.1021/acs.est.8b06880

 

 

22.

J. Luo, M. Sun, C.L. Ritt, X. Liu, Y. Pei, J. Crittenden, M. Elimelech, “Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets,” Environ. Sci. Technol. 53, 2075-2085 (2019). DOI: 10.1021/acs.est.8b07027

 

 

23.

C.L. Ritt, B.J. Chisholm, A.N. Bezbaruah, “Assessment of molecularly imprinted polymers as sustainable phosphate sorbents” Chemosphere, 226, 395-404 (2019). DOI: 10.1016/j.chemosphere.2019.03.087

 

 

24.

M.E. Hossain, C.L. Ritt, T. Almeelbi, A.N. Bezbaruah, “Biopolymer beads for aqueous phosphate removal: Possible Application in eutrophic lakes,” J. Environ. Eng. 144, 04018030 (2018). DOI: 10.1061/(ASCE)EE.1943-7870.0001347

 
 
 

Submitted or In Preparation

 
 

1.

C.L. Ritt, M. Quien, Z. Wei, H. Gress, M.T. Dronadula, K. Altmisdort, Y.-M. Tu, M. Gadaloff, N.R. Aluru, K.L. Ekinci, J.S. Bunch, M.S. Strano, “A molecularly impermeable polymer from two-dimensional polyaramids,” (submitted to Science – https://doi.org/10.26434/chemrxiv-2024-c8b17-v2).

 

 

2.

X. Xu, X. Jin, M. Kuehne, D-.L. Bao, J. Martis, Y-M. Tu, C.L. Ritt, et al., “Hydrogen bonding in water under extreme confinement unveiled by nanoscale vibrational spectroscopy and simulations,” (under review in Nature – https://doi.org/10.48550/arXiv.2402.17989).

 

 

3.

C.L. Ritt and M.S. Strano, “Leveraging plant nanobionics to engineer next-generation phytoremediation technologies,” (in preparation).


 

4.

C.L. Ritt‡, M. Quien‡, Z. Wei, M.S. Strano, “Chemical stability and aging resistance of twodimensional polyaramid thin films,” (in preparation).


 

5.

S. Garimella, Y.-M. Tu, C.L. Ritt, M.S. Strano, “Fluid isobars described by a confined equation of state,” (in preparation).


 

6.

Y.-M. Tu, X. Gong, M. Quien, Zitang Wei, C.L. Ritt, M.S. Strano, “Morphological characterization of 2D polyaramids using transmission electron microscopy,” (in preparation).

 
 

Patents

 
 

1.

C.L. Ritt and M. Strano, “Plant nanobionics for enhanced phytoremediation,” PCT Patent Application No. PCT/US2024/025618 (2024).