Cody Ritt
 

Featured Publications

Jump to total publication list

 
 

machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores

C.L. Ritt, M. Liu, T.A. Pham, R. Epsztein, H.J. Kulik, M. Elimelech, Science Advances, 8, eabl5771 (2022)

 

abstract

Designing single-species selective membranes for high-precision separations requires a fundamental understanding of the molecular interactions governing solute transport. Here, we comprehensively assess molecular-level features that influence the separation of 18 different anions by nanoporous cellulose acetate membranes. Our analysis identifies the limitations of bulk solvation characteristics to explain ion transport, highlighted by the poor correlation between hydration energy and the measured permselectivity (R^2 = 0.37). Entropy-enthalpy compensation, spanning 40 kilojoules per mole, leads to a free-energy barrier (∆G‡) variation of only ~8 kilojoules per mole across all anions. We apply machine learning to elucidate descriptors for energetic barriers from a set of 126 collected features. Notably, electrostatic features account for 75% of the overall features used to describe ∆G‡, despite the relatively uncharged state of cellulose acetate. Our work presents an approach for studying ion transport across nanoporous membranes that could enable the design of ion-selective membranes.

Check out our Twitter highlight on the work for a detailed synopsis!


ionization behavior of nanoporous polyamide membranes

C.L. Ritt, J.R. Werber, M. Wang, Z. Yang, Y. Zhao, H.J. Kulik, M. Elimelech, Proceedings of the National Academy of Science, 117, 30191–30200 (2020)

Abstract

Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure–property–performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water–salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.

Check out our Twitter highlight or the Yale News release on the work for detailed synopses!

 

Monte carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity

C.L. Ritt, J.R. Werber, A. Deshmukh, M. Elimelech, Environmental Science & Technology, 53, 6214–6224 (2019)

Abstract

Two-dimensional nanomaterial (2-D NM) frameworks, especially those comprising graphene oxide, have received extensive research interest for membrane-based separation processes and desalination. However, the impact of horizontal defects in 2-D NM frameworks, which stem from nonuniform deposition of 2-D NM flakes during layer build-up, has been almost entirely overlooked. In this work, we apply Monte Carlo simulations, under idealized conditions wherein the vertical interlayer spacing allows for water permeation while perfectly excluding salt, on both the formation of the laminate structure and molecular transport through the laminate. Our simulations show that 2-D NM frameworks are extremely tortuous (tortuosity ≈ 1000), with water permeability decreasing from 20 to <1 LMH/bar as thickness increased from 8 to 167 nm. Additionally, we find that framework defects allow salt to percolate through the framework, hindering water–salt selectivity. 2-D NM frameworks with a packing density of 75%, representative of most 2-D NM membranes, are projected to achieve <92% NaCl rejection at a water permeability of <1 LMH/bar, even with ideal interlayer spacing. A high packing density of 90%, which to our knowledge has yet to be achieved, could yield comparable performance to current desalination membranes. Maximizing packing density is therefore a critical technical challenge, in addition to the already daunting challenge of optimizing interlayer spacing, for the development of 2-D NM membranes.

 

updated 7/7/23

Publication List

First-author: 9 — corresponding: 1 — total: 22h-index: 14

‡equal contribution

*CORRESPONDING AUTHOR

 

1.

L.F. Villalobos, K.E. Pataroque, W. Pan, T. Cao, M. Kaneda, C. Violet, C.L. Ritt, M. Elimelech, “Orientation matters: Measuring the correct surface of polyamide membranes with quartz crystal microbalance,” J. Membr. Sci. Lett. 100048 (2023). DOI: 10.1016/j.memlet.2023.100048


 

2.

M.G. Barsukov‡, C.L. Ritt‡*, I.V. Barsukov, E.M. Syth, M. Elimelech, “Influence of graphite geography on the yield of mechanically exfoliated few-layer graphene,” (2023). DOI: 10.1016/j.carbon.2023.03.068


 

3.

N.R. Aluru, F. Aydin, M.Z. Bazant, D. Blankschtein, A.H. Brozena, J.P. de Souza, et al., “Fluids and electrolytes under confinement in single-digit nanopores,” Chem. Rev. 123, 2737-2831 (2023). DOI: 10.1021/acs.chemrev.2c00155


 

4.

C.L. Ritt, J.P. de Souz, M.G. Barsukov, S. Yosinski, M.Z. Bazant, M.A. Reed, M. Elimelech, “Thermodynamics of charge regulation during ion transport through silica nanochannels,” ACS Nano 16, 15249-15260 (2022). DOI: 10.1021/acsnano.2c06633

 

 

5.

M. Heiranian, R.M. DuChanois, C.L. Ritt, C.A. Violet, M. Elimelech, “Molecular simulations of transport phenomena in polymeric membranes: Implications for membrane design,” Environ. Sci. Technol. 56, 3313-3323 (2022). DOI: 10.1021/acs.est.2c00440

 

 

6.

C.L. Ritt‡, M. Nami‡, M. Elimelech, “Laser interferometry for precise measurement of ultralow flow rates from permeable materials,” Environ. Sci. Technol. Lett. 9, 233-238 (2022). DOI: 10.1021/acs.estlett.2c00026

 

 

7.

C.L. Ritt, M. Liu, T.A. Pham, R. Epsztein, H.J. Kulik, M. Elimelech, “Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores,” Sci. Adv. 8, 2, eabl5771 (2022). DOI: 10.1126/sciadv.abl5771

 

 

8.

C.L. Ritt‡, T. Stassin‡, D.M. Davenport, R.M. DuChanois, I. Nulens, Z. Yang, N. Segev-Mark, A. Ben-Zvi, M. Elimelech, C.Y. Tang, G.Z. Ramon, I.F.J. Vankelecom, R. Verbeke, “The Open Membrane Database: Synthesis–structure–performance relationships of reverse osmosis membranes,” J. Membr. Sci. 641, 119927 (2022). DOI: 10.1016/j.memsci.2021.119927

 

 

9.

C. Lu, C. Hu, C.L. Ritt, X. Hua, J. Sun, H. Xia, Y. Liu, D. Li, B. Ma, M. Elimelech, J. Qu, “In situ characterization of dehydration during ion transport in polymeric nanochannels,” J. Am. Chem. Soc. 143, 14242-14252 (2021). DOI: 10.1021/jacs.1c05765

 

 

10.

R. Verbeke, D.M. Davenport, T. Stassin, S. Eyley, M. Dickmann, J. Alexander, P. Dara, C.L. Ritt, C. Bogaerts, W. Egger, R. Ameloot, J. Meersschaut, W. Thielemans, G. Koeckelberghs, M. Elimelech, I.F.J. Vankelecom, “Chlorine-resistant epoxide-based membranes for sustainable water desalination,” Environ. Sci. Technol. Lett. 8, 818-824 (2021). DOI: 10.1021/acs.estlett.1c00515

 

 

11.

W.-H. Zhang, M.-J. Yin, Q. Zhao, C.-G. Jin, N. Wang, S. Ji, C.L. Ritt, M. Elimelech, Q.-F. An, “Graphene oxide membranes with stable porous structure for ultrafast water transport,” Nat. Nanotechnol. 16, 337-343 (2021). DOI: 10.1038/s41565-020-00833-9

 

 

12.

C.L. Ritt, J.R. Werber, M. Wang, Z. Yang, Y. Zhao, H.J. Kulik, M. Elimelech, “Ionization behavior of nanoporous polyamide membranes,” Proc. Natl. Acad. Sci. U.S.A. 117, 30191- 30200 (2020). DOI: 10.1073/pnas.2008421117

 

 

13.

D.M. Davenport, C.L. Ritt, R. Verbeke, I.F.J. Vankelecom, M. Elimelech, “Thin film composite membrane compaction in high-pressure reverse osmosis,” J. Membr. Sci. 610, 118268 (2020). DOI: 10.1016/j.memsci.2020.118268

 

 

14.

X. Lu, U.R. Gabinet, C.L. Ritt, X. Feng, A. Deshmukh, K. Kawabata, M. Kaneda, S.M. Hashmi, C.O. Osuji, M. Elimelech, “Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior,” Environ. Sci. Technol. 54, 9640-9651 (2020). DOI: 10.1021/acs.est.0c02364

 

 

15.

R. Epsztein, R.M. DuChanois, C.L. Ritt, A. Noy, M. Elimelech, “Towards single-species selectivity of membranes with subnanometre pores,” Nat. Nanotechnol. 15, 426-436 (2020). DOI: 10.1038/s41565-020-0713-6

 

 

16.

C.J. Porter, J.R. Werber, C.L. Ritt, Y.F. Guan, M. Zhong, M. Elimelech, “Controlled grafting of polymer brush layers from porous cellulosic membranes,” J. Membr. Sci. 596, 117719 (2020). DOI: 10.1016/j.memsci.2019.117719

 

 

17.

S.K. Patel‡, C.L. Ritt‡, A. Deshmukh, Z. Wang, M. Qin, R. Epsztein, M. Elimelech, “The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies,” Energy Environ. Sci. 13, 1694-1710 (2020). DOI: 10.1039/D0EE00341G

 

 

18.

F. Aydin, C. Zhan, C.L. Ritt, R. Epsztein, M. Elimelech, E. Schwegler, T.A. Pham, “Similarities and differences between potassium and ammonium ions in liquid water: A first-principles study,” Phys. Chem. Chem. Phys. 22, 240-2548 (2020). DOI: 10.1039/C9CP06163K

 

 

19.

C.L. Ritt‡, J.R. Werber‡, A. Deshmukh, M. Elimelech, “Monte Carlo simulations of framework defects in layered two-dimensional desalination membranes: Implications for permeability and selectivity,” Environ. Sci. Technol. 53, 6214-6224 (2019). DOI: 10.1021/acs.est.8b06880

 

 

20.

J. Luo, M. Sun, C.L. Ritt, X. Liu, Y. Pei, J. Crittenden, M. Elimelech, “Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets,” Environ. Sci. Technol. 53, 2075-2085 (2019). DOI: 10.1021/acs.est.8b07027

 

 

21.

C.L. Ritt, B.J. Chisholm, A.N. Bezbaruah, “Assessment of molecularly imprinted polymers as sustainable phosphate sorbents” Chemosphere, 226, 395-404 (2019). DOI: 10.1016/j.chemosphere.2019.03.087

 

 

22.

M.E. Hossain, C.L. Ritt, T. Almeelbi, A.N. Bezbaruah, “Biopolymer beads for aqueous phosphate removal: Possible Application in eutrophic lakes,” J. Environ. Eng. 144, 04018030 (2018). DOI: 10.1061/(ASCE)EE.1943-7870.0001347

 
 
 

Submitted or In Preparation

 
 

1.

C.L. Ritt, M.S. Strano, “Leveraging plant nanobionics to engineer next-generation phytoremediation technologies,” (in preparation).

 

 

2.

C.L. Ritt, M. Quien, Z. Yuan, Y.-M. Tu, J.S. Bunch, M.S. Strano “Ultra-low gas permeability of irreversibly bonded two-dimensional polyaramid (2DPA-1) films,” (in preparation).

 

 

3.

M. Kuehne, Y.-M. Tu, C.L. Ritt, et. al., “Anomalous environmental damping in vibrationally coupled carbon nanotubes,” (submitted).